

The Reward Function in Reinforcement Learning

CMPUT 605 - Theory of RL - Project Presentation

Alireza Masoumian

11 April 2023

Maximization of the expected value of the cumulative sum of a received reward. Meaningful

What is the Meaningful Reward?!

• The Algorithms are too to-the-point.

Rational Risky Reward Dependent

What is the General Recipe?!

• How can we transfer the experience between the problems?

Solutions

What is the Meaningful Reward? What is the General Recipe?

• Consider a large set of rewards within the meta training phase ... What Unsupervised RL do ...

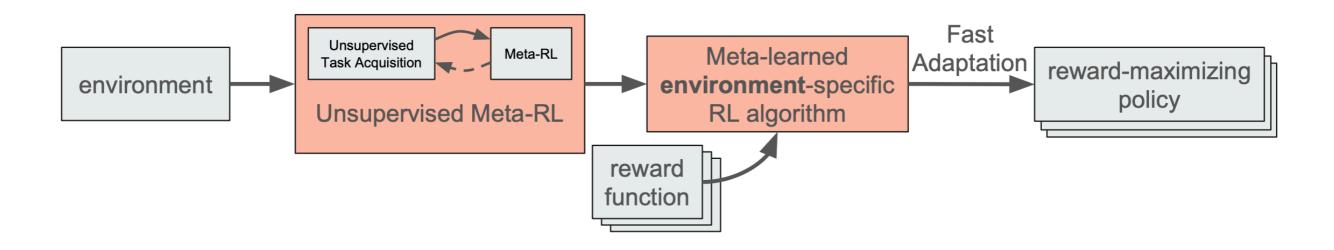
• Design a Self-Consistent General Reward Function ...

What I like to do ...

Unsupervised Meta-Learning for Reinforcement Learning

Abhishek Gupta^{*1} Benjamin Eysenbach^{*2} Chelsea Finn³ Sergey Levine¹

An Example for The First Approach



• Considering a set of rewards $r_z(s, a)$ where $z \sim p(z)$.

$$\max_{p(z)} I(\tau; z) = \mathcal{H}[\tau] - \mathcal{H}[\tau \mid z]$$

• The task distribution that provides explorations when it's free and exploits when the task (reward) is given.

An Example for The First Approach

$$f^* \triangleq \arg \max_{f} \mathbb{E}_{p(r_z)} \left[R(f, r_z) \right]$$
$$\mathsf{REGRET}(f, p(r_z)) \triangleq \mathbb{E}_{p(r_z)} \left[R(f^*, r_z) \right] - \mathbb{E}_{p(r_z)} \left[R(f, r_z) \right]$$

• We have a Controlled Markov Process $C = (S, A, P, \gamma, \rho)$,

$$\begin{aligned} \operatorname{Regret}_{\mathrm{WC}}(f,C) &= \max_{p(r_z)} \operatorname{Regret}(f,p(r_z)) \\ f_C^* &\triangleq \arg\min_{f} \operatorname{Regret}_{\mathrm{WC}}(f,C) \end{aligned}$$

• Optimal unsupervised meta-learner $F^*(C) = f_C^*$:

$$\mathcal{F}^* \triangleq \operatorname*{arg\,min}_{\mathcal{F}} \operatorname{ReGRet}_{WC}(\mathcal{F}(C), C)$$

The Result

• We By optimizing a task proposal distribution that maximizes trajectory-level mutual information, and subsequently performing meta-learning on the proposed tasks, we can acquire the optimal unsupervised meta-learner for trajectory matching tasks.

$$\mathcal{F}^* \triangleq \operatorname*{arg\,min}_{\mathcal{F}} \operatorname{ReGRet}_{WC}(\mathcal{F}(C), C)$$

Reward-Free RL is No Harder Than Reward-Aware RL in Linear Markov Decision Processes

Andrew Wagenmaker¹ Yifang Chen¹ Max Simchowitz² Simon S. Du¹ Kevin Jamieson¹

• In contrast to the tabular setting, where we have optimal rate of $\Theta(SA/\epsilon^2)$ in reward-aware and $\Theta(S^2A/\epsilon^2)$ in reward-free.

Second Approach, First Idea

- Give a Self-Consistent General Reward function.
- Based on $C = (S, A, P, \gamma, \rho)$, we can construct a $M = (S, A', R, P, \gamma, \rho)$ such that,

$$A' = \{(a, \hat{s}) : a \in A, \hat{s} \in S\}$$

$$R_{a'}(s_t) = \mathbf{1}[\hat{s} = s_{t+1}] + B_{a'}(s_t)$$

- A bonus reward to motivate exploration.
- It's hard to be memory-less!
- Using the resulting policy as the initialization.

Thank you