Online Learnability and Complexity Measures

Project Presentation - CMPUT 654, ML Theory

Alireza Masoumian

7 Dec 2023

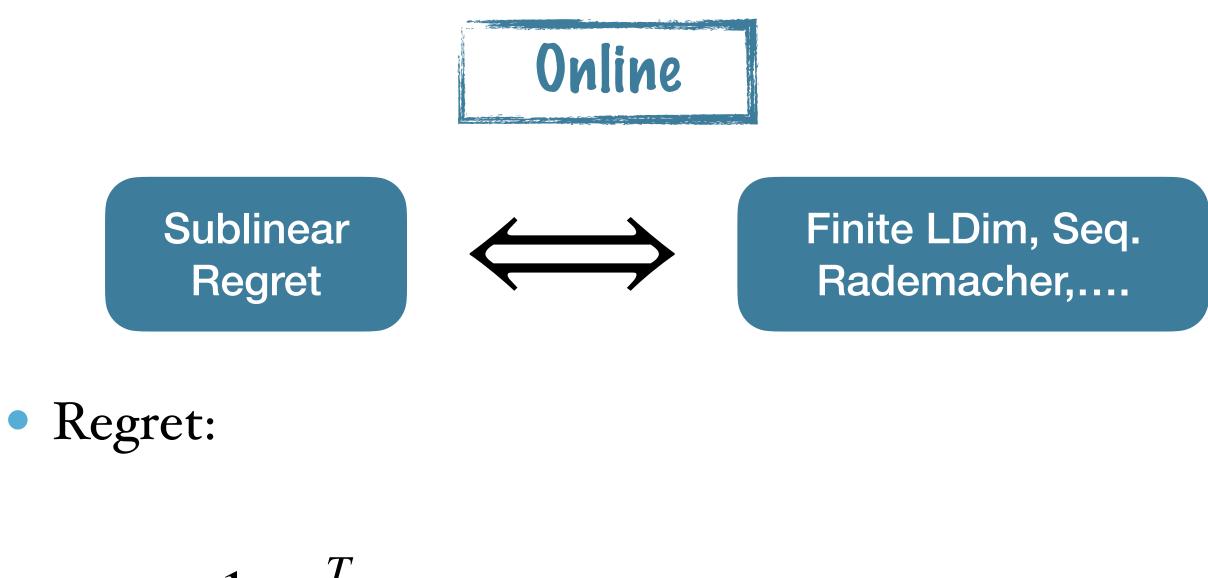
What if instead of "batch" data, we have a stream of data?

Alexander Rakhlin Department of Statistics University of Pennsylvania

> Ambuj Tewari Computer Science Department University of Texas at Austin

> > October 29, 2010

Online Learning: Random Averages, Combinatorial Parameters, and Learnability


> Karthik Sridharan Toyota Technological Institute at Chicago

Batch (Offline) Finite VCDim, PAC Learning Rademacher,...

• Existence of an efficient algorithm finding a Probably Approximate Correct hypothesis.

$$w.p. \quad 1-\delta:$$

$$err_{D}(\hat{f}) - err_{D}(f^{*}) \leq \epsilon$$

- Generic algorithm: Empirical Risk Minimization (ERM)
- Oracle inequalities

$\frac{1}{T} \left(\sum_{t=1}^{I} err_t(\hat{f}_t) - err_t(f^*) \right) \in o(1)$

• Generic algorithm: Standard Optimal Algorithm (SOA)

N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. 1988

Hypothesis Class \mathcal{F} Feature Set \mathcal{X}

A learner interacts with an adversary over T rounds. In each round t = 1, 2, ..., T:

> Learner picks a distribution $q_t \in Q$ over functions $f : \mathcal{X} \to \mathcal{Y}$ Adversary picks a feature-label pair x_t Learner draws a sample $f_t \sim q_t$ and suffers loss $f_t(x_t)$

Regret:

$$\mathbb{E} \inf_{f \in \mathscr{F}} \sum_{t=1}^{T} \left[f_t(x_t) - f(x_t) \right]$$

Online Learning

Repetitive Two-Player Game

What's its value?

Dec 2023

4

Hypothesis Class F Label Set $\mathcal{Y} \subseteq \mathbb{R}$ Feature Set \mathcal{X} A learner interacts with an adversary over T rounds. In each round t = 1, 2, ..., T:

Learner picks a distribution $q_t \in Q$ over functions $f : \mathcal{X} \to \mathcal{Y}$ Adversary picks a feature-label pair (x_t, y_t) Learner draws a sample $f_t \sim q_t$ and suffers loss $err_t(f_t) = \ell(f_t(x_t) - y_t)$

Regret:

$$\mathbb{E}\sum_{t=1}^{T} \left[err_t(f_t) - \inf_{f^* \in \mathscr{F}} err_t(f^*) \right]$$

Online Learning

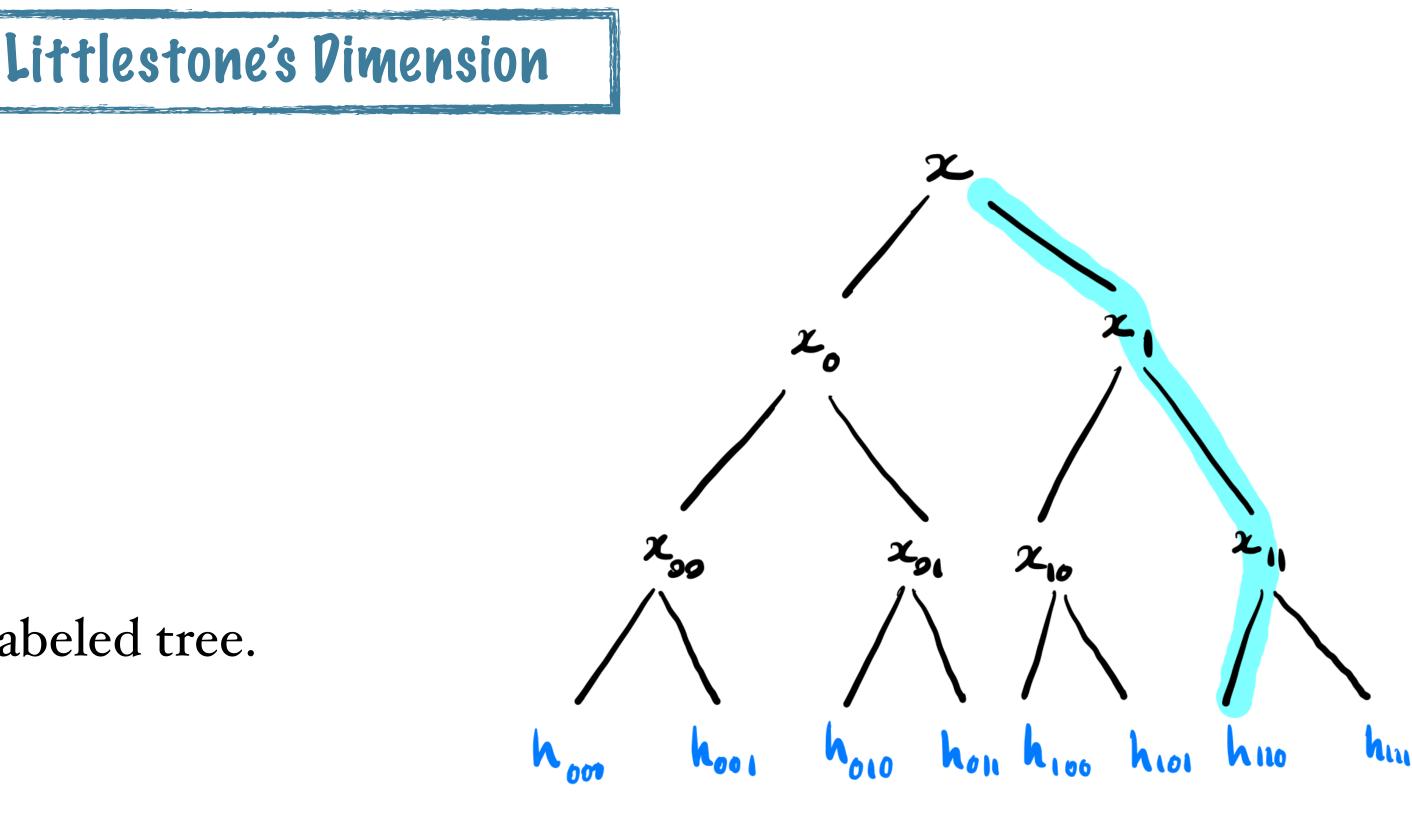
Repetitive Two-Player Game

What's its value?

Realizable: $\exists f^* : f^*(x_t) = y_t \quad \forall t$

Agnostic: o.w.

Analogous to VC dimension (Binary)


Shattered Tree: \forall path ϵ , $\exists f \in \mathcal{F}$

Ldim : = Max depth of a shattered labeled tree.

d such that \mathcal{F} shatters an \mathcal{X} -valued tree of depth d.

Continuous version?! fat-shattering

- N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. 1988
- S. Ben David et al, Agnostic online learning, 2009

Definition 6. An \mathcal{X} -valued tree \mathbf{x} of depth d is *shattered* by a function class $\mathcal{F} \subseteq \{\pm 1\}^{\mathcal{X}}$ if for all $\epsilon \in \{\pm 1\}^d$, there exists $f \in \mathcal{F}$ such that $f(\mathbf{x}_t(\epsilon)) = \epsilon_t$ for all $t \in [d]$. The Littlestone dimension $\operatorname{Ldim}(\mathcal{F}, \mathcal{X})$ is the largest

• Value of the Game:

$$\mathcal{V}_T(\mathcal{F}, \mathcal{X}) = \inf_{q_1 \in \mathcal{Q}} \sup_{x_1 \in \mathcal{X}} \mathbb{E}_{f_1 \sim q_1} \cdots \inf_{q_T \in \mathcal{Q}} \sup_{x_T \in \mathcal{X}} \mathbb{E}_{f_T \sim q_T} \left[\sum_{t=1}^T f_t(x_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^T f(x_t) \right]$$

Prokhorov's theorem =

$$= \sup_{p_1} \mathbb{E}_{x_1 \sim p_1} \dots \sup_{p_T} \mathbb{E}_{x_T \sim p_T} \left[\sum_{t=1}^T \inf_{f_t \in \mathcal{F}} \mathbb{E}_{x_t \sim p_t} \left[f_t(x_t) \right] - \inf_{f \in \mathcal{F}} \sum_{t=1}^T f(x_t) \right]$$

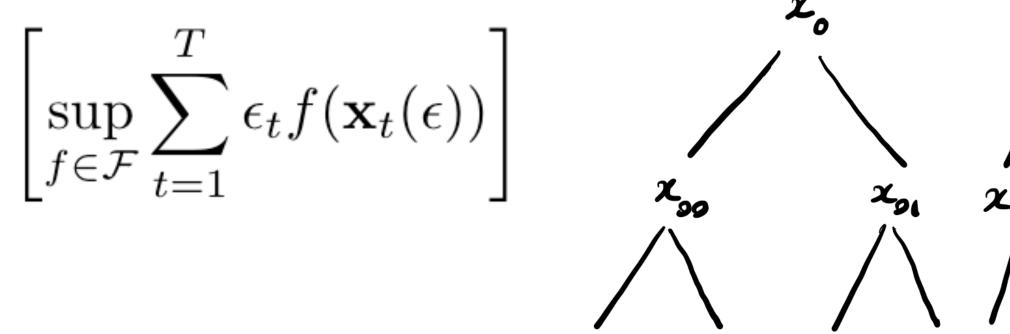
• \mathcal{F} is "online learnable" w.r.t \mathcal{X} if:

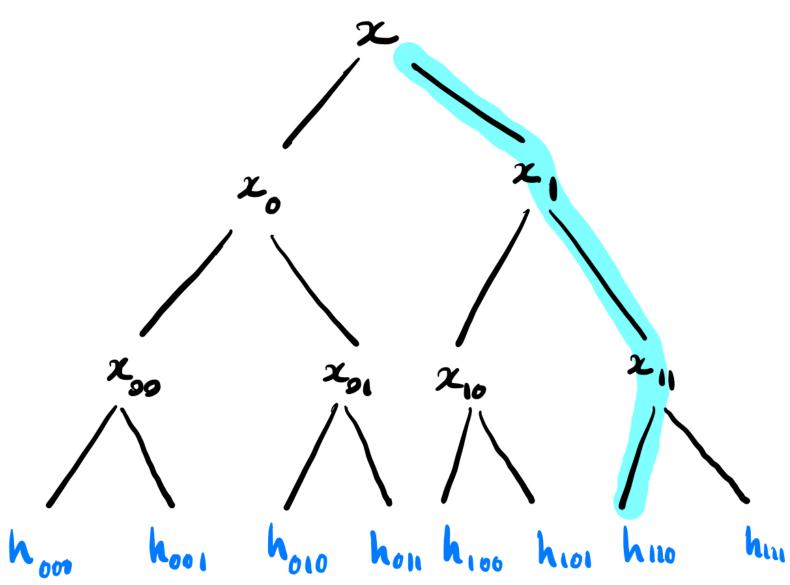
 $\limsup_{T\to\infty}$

$$rac{\mathcal{V}_T(\mathcal{F},\mathcal{X})}{T} = 0 \; .$$

Dec 2023

7


• Like offline, but ϵ and samples are no longer independent:


$$\mathfrak{R}_T(\mathcal{F}) = \sup_{\mathbf{x}} \mathbb{E}_{\epsilon}$$

• Minimax value is bounded with Sequential Rademacher complexity:

• A bit more tricky symmetrization...

Sequential Rademacher Complexity

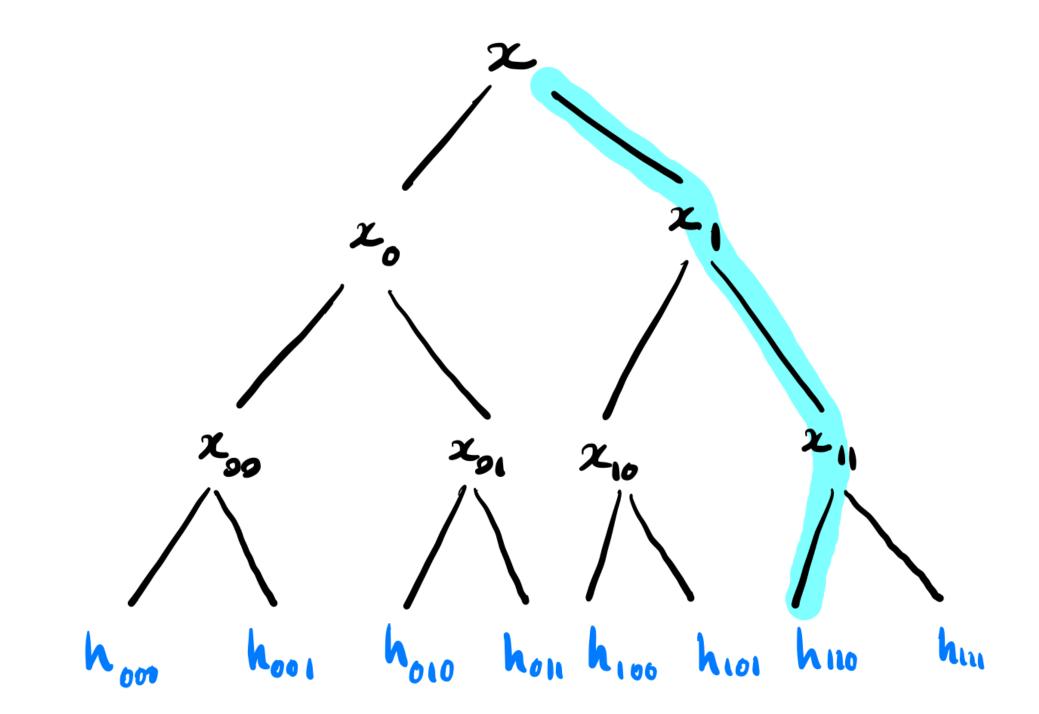
 $\mathcal{V}_T(\mathcal{F}) \leq 2\mathfrak{R}_T(\mathcal{F})$

- ERM of online learning
- Compute the little stone dimension of a sub-hypothesis class

• Realizable setting:

 $Reg \leq Ldim$

Agnostic setting:


 $Reg \leq \tilde{\mathcal{O}}(\sqrt{Ldim} \cdot T)$

• Making T^{Ldim} many experts s.t. \exists optimal experts \rightarrow Expert Advise problem

S. Ben David et al, Agnostic online learning, 2009

Online Learnabitlity and Complexity Measures

Standard Optimal Algorithm (SOA)

What if I use ERM in Online Learning?

• Not too sublinear!

• Still need exponentially number of queries to ERM

Online Learning and Solving Infinite Games with an ERM Oracle

Angelos Assos *

Idan Attias[†] Yuval Dagan[‡] Maxwell Fishelson[¶]

Constantinos Daskalakis §

July 11, 2023

Unapproximability of Littlestone's Dimension

• Hard to approximate!

Improved Inapproximability of VC Dimension and Littlestone's Dimension via (Unbalanced) Biclique

> Pasin Manurangsi Google Research, Thailand pasin@google.com

> > November 4, 2022

Dec 2023

