

Automated Mechanism Design

Final Project Presentation

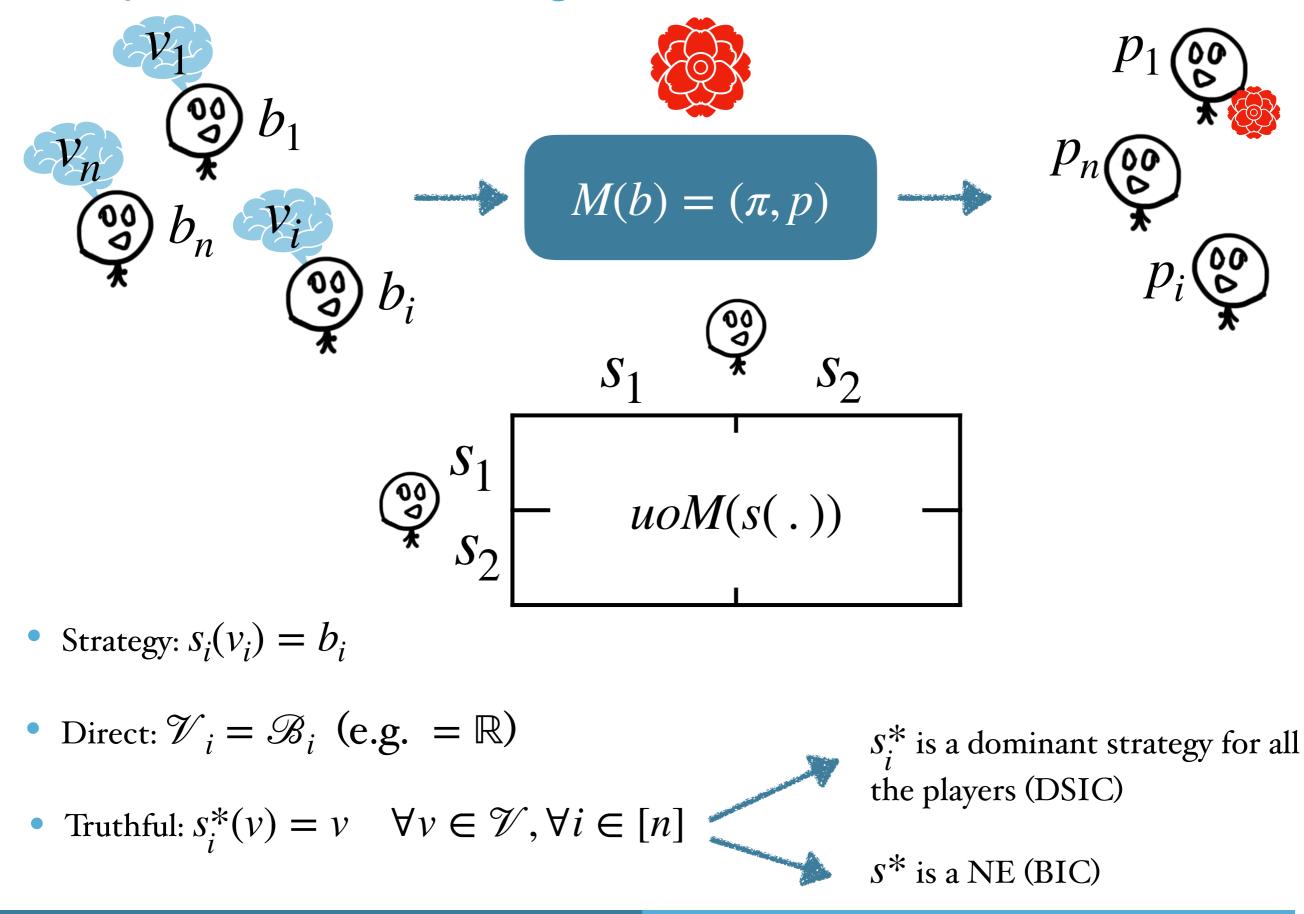
Yasmin Madani, Alireza Masoumian

11 Apr 2024

How can we learn the optimal mechanism with respect to a certain objective? (If there is any!)

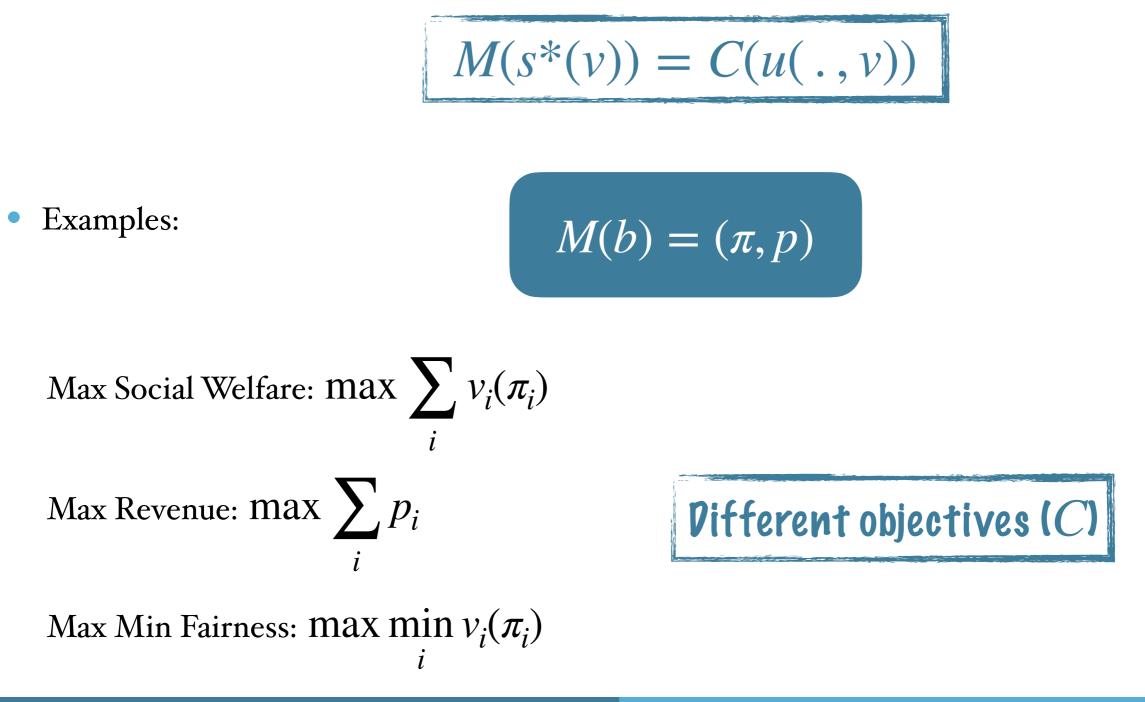
- Revelation Principle Direct and Truthful Mechanisms Still Big!
- Trial and error ??!!

Recap: Mechanism Design



Recap: Mechanism Design

- M should be an implementation of a <u>social choice function C</u>
- C maps a utility function profile to an outcome



Bird Eye View

General Mechanism Design

• Revelation Principle

Onto + Truthful ⇒Dictatorial
[Gibbard-Satterthwaite]

Restricted Preferences

- Quasi Linear
- Additive valuation
- Unit-demand valuation

Sturctured

- Auction
- Pricing

Linear

Programming

Reduction to Alg. Desing

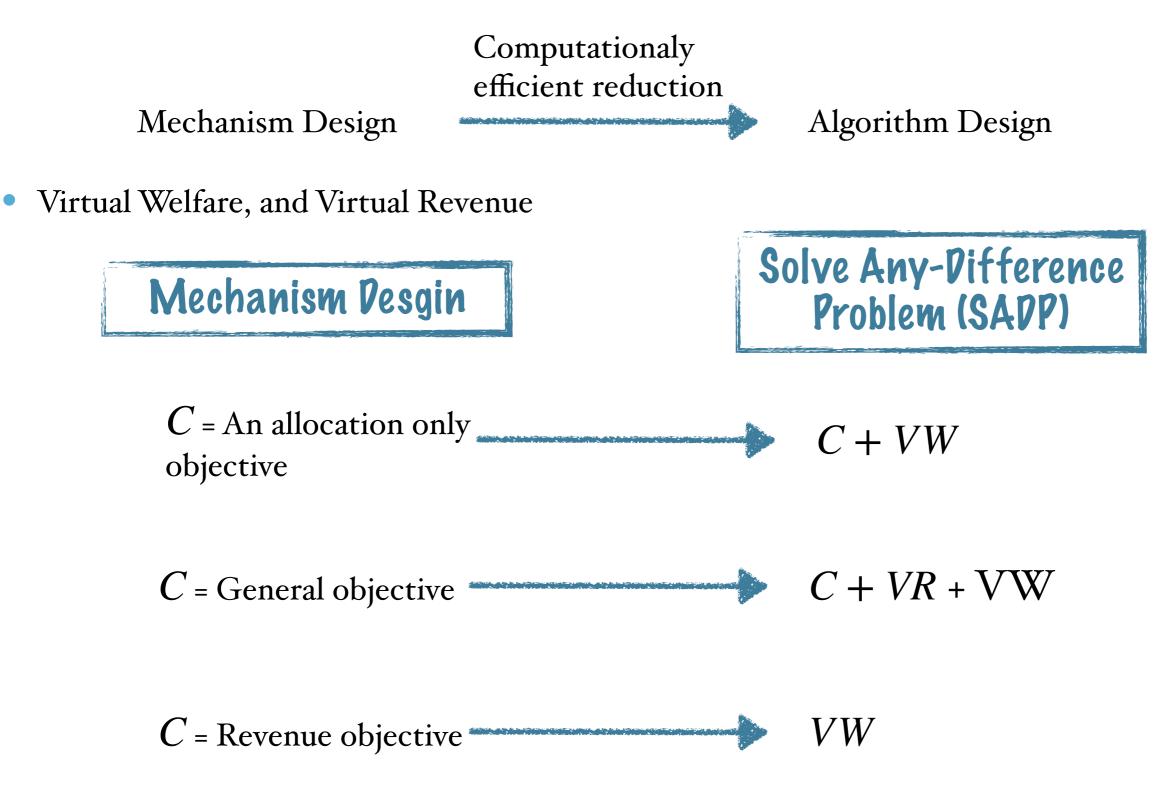
• Max Rev

(Deep) RL

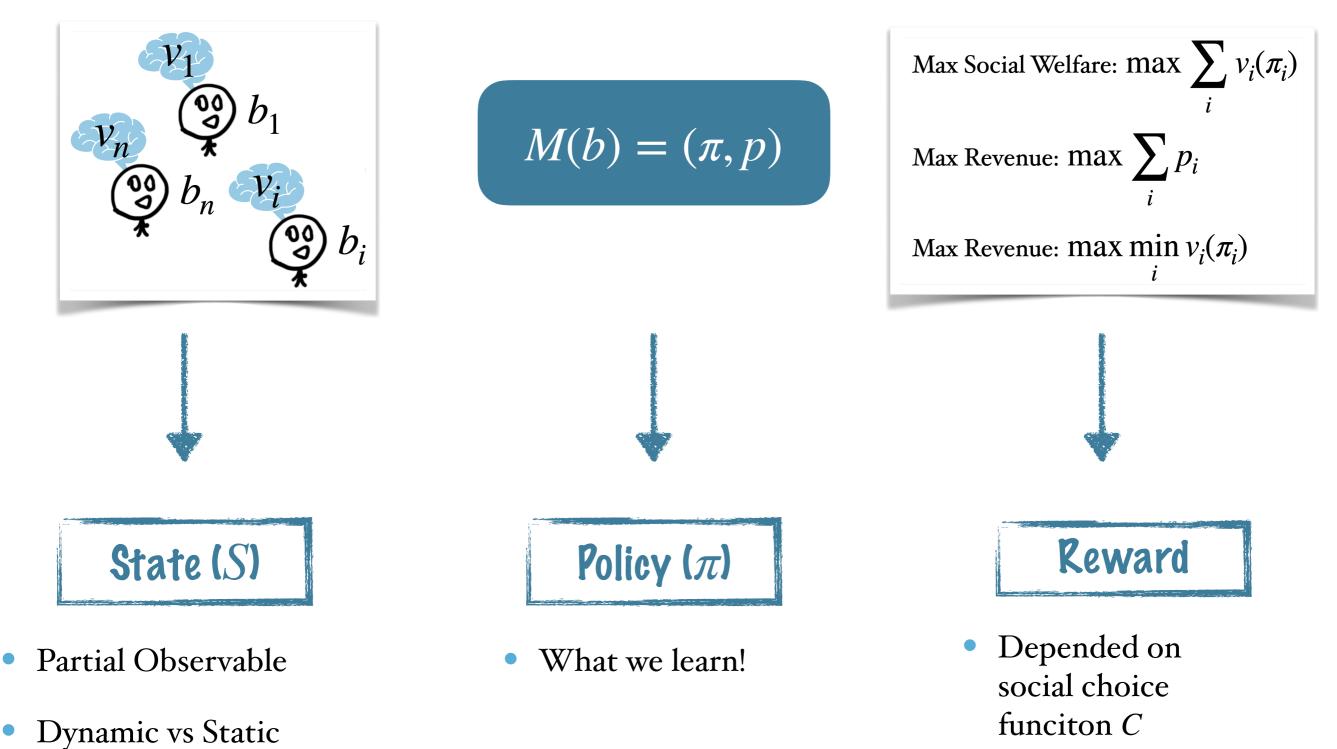
- Max SW
- Max Min Fairness

Special Social Choice Func.

Mechanism Design to Algorithm Design



Common Theme



General Mechanism Design

Revelation Principle

• Onto + Truthful ⇒Dictatorial

[Gibbard-Satterthwaite]

(Deep) RL

Restricted Preferences

- Quasi Linear
- Additive valuation
- Unit-demand valuation

Sturctured

- Auction
- Pricing

Linear Programming

Reduction to Alg. Desing

- Max Rev
- Max SW
- Max Min Fairness

Special Social <u>Choice</u> Func.

LP for Dynamic Mechanism Design

Can we efficiently compute optimal mechanism in unstructured dynamic environment?

- What is a dynamic env.? $\rightarrow V_t(S, a), P_t(S, a, S')$
- Incentive compatible : misreporting s' does not improve utilities
- Individually Rational

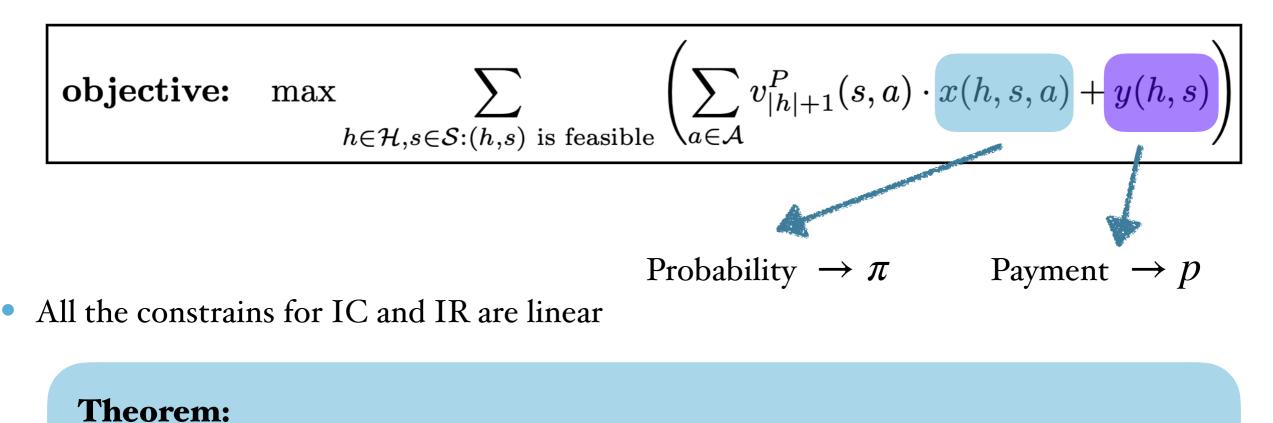
Vorall IR

Dynamic IR

• Utilities:

$$\begin{split} u_P^M(h,s) &= \sum_a \pi(h,s,a) \cdot \left(v_{|h|+1}^P(s,a) + \sum_{s'} P_{|h|+1}(s,a,s') \cdot u_P^M(h+(s,a),s') \right) + p(h,s), \\ u_A^M(h,s) &= \sum_a \pi(h,s,a) \cdot \left(v_{|h|+1}^A(s,a) + \sum_{s'} P_{|h|+1}(s,a,s') \cdot u_A^M(h+(s,a),s') \right) - p(h,s), \\ \text{Instant reward} \quad \text{Look ahead accumulated} \quad \text{Payment} \end{split}$$

LP for Dynamic Mechanism Design



$$O(poly(|S|^T, |A|^T, L)) \Longrightarrow \stackrel{\text{An IR, IC mechanism}}{\longrightarrow} \operatorname{implementing max Revenue}$$

- Deterministic Mechanism → Non-linear Constraints
- Arbitrary large $T \rightarrow NP$ -Hard to approximate up to a multiplicative constant

General Mechanism Design

Revelation Principle

• Onto + Truthful ⇒Dictatorial

[Gibbard-Satterthwaite]

Restricted Preferences

- Quasi Linear
- Additive valuatior
- Unit-demand valuation

Sturctured

- Auction
- Pricing

(Deep) RL

Linear Programming

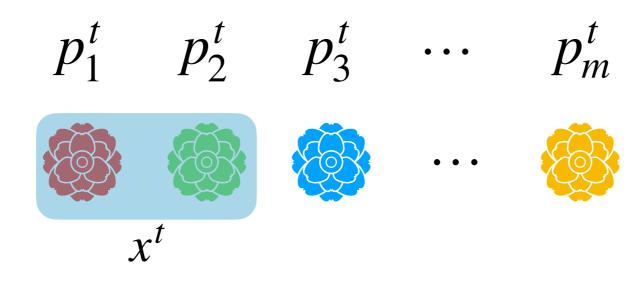
Reduction to Alg. Desing

- Max Rev
- Max SW
- Max Min Fairness

Special Social Choice Func.

POMDP for Sequential Pricing

• Sequential Pricing Mechanism (SPM)



- Agent i^t takes bundle based on his valuation function V_i
- After time $T = n \rightarrow$ the outcome of the episod is determined (x, p)
- Terminal Reward of the episode := C(x, p)

Episodic POMPP

• Action $a^t := (p^t, i^t)$ • Observation $o^t := x^t$ • State $s^t := v$ • Reward $r^\tau := C(\mathbf{x}, p)$

POMDP for Sequential Pricing

• POMDP ⇒ Optimal policy might not be memoryless

How complex can be the policy wrt the history?

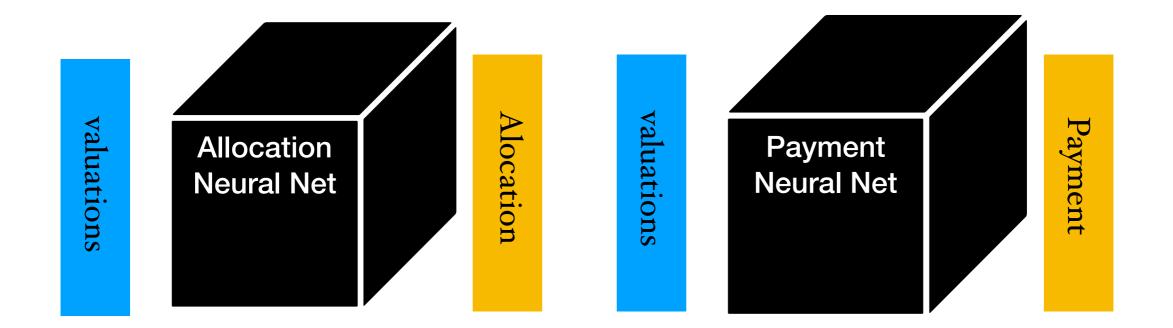
Proposition:

There exists a value function (an environment) where the Welfare optimal policy does not lie on the linear policy set!

- By linear we mean using the allocation matrix and remaining agents. i.e $\theta \in \mathbb{R}^{n+m}$
- Good to use Neural Nets and deep RL algorithms.

Optimal Auction Desing Through Deep Learning

- Using Multi-layer NN to encode rules of auctions.
- Exploit the Objective on the training!!: We want to converge to an IC mechanism
- Common prior $F = (F_1, ..., F_n)$ Distributions over valuations $v_i \sim F_i$
- What are the inputs? Bids or valuations?!!



Take Away

- There are some imposibility results for the general MD problem.
- For some specific settings we can model the MD problem as a learning problem.
- There is a meaningful connection between the components of MD and that of RL

<u>Reference</u>

Understanding Incentives: Mechanism Design becomes Algorithm Design

Yang Cai^{*} Cor EECS, MIT ycai@csail.mit.edu

Constantinos Daskalakis[†] EECS, MIT costis@mit.edu S. Matthew Weinberg[‡] EECS, MIT smw79@mit.edu

May 20, 2013

Automated Dynamic Mechanism Design

Hanrui Zhang Duke University

Vincent Conitzer Duke University

Reinforcement Learning of Sequential Price Mechanisms*

Gianluca Brero^a, Alon Eden^a, Matthias Gerstgrasser^a, David C. Parkes^a, and Duncan Rheingans-Yoo^a

^aHarvard University

Optimal Auctions through Deep Learning: Advances in Differentiable Economics^{*}

Paul Dütting^a, Zhe Feng^a, Harikrishna Narasimhan^a, David C. Parkes^b, and Sai Srivatsa Ravindranath^b Thank you