
On Regrets: From External Regret to Average Reward Regret

Alireza Masoumian AMASOUMI@UALBERTA.CA

Department of Computing Science, University of Alberta / Amii

In online decision-making, the performance of the algorithm or the agent is usually measured by
a notion of regret. We see regret in Online learning, Bandits, and (online) Reinforcement learning as
they are the frameworks for modeling online decision-making. There are different notions, although
they usually capture the same logic which is measuring the difference between what is done and a
benchmark for acting in hindsight. Assuming T rounds of taking actions, we denote the regret of an
algorithm (let’s call it Alg) by Reg(T). Usually having zero regret is impossible (unless you know
the future!), so with a little bit of compromise, we define no-regret algorithms to be the ones that
have sub-linear regret in time, i.e. Reg(T) ∈ o(T). In this post, we go over different notions of
regret.

1. External Regret

This is the most common notion and at the same time one of the simplest ones. External regret
appears in Bandit an Online learning literature. In words, it compares the algorithm performance to
taking the best fixed action in hindsight. Suppose at each iteration t ∈ [1 : T], the algorithm takes
an action at ∈ A and the environment, stochastically or adversarially, chooses ut : A → R as a
function that determines the reward of taking each action. The external regret is defined as,

RegE(T) = max
a∈A

T∑
t=1

ut(a)−
∑
t

ut(at)

There are many algorithms developed for this notion of regret, like Explore then Commit (ETC), or
mirror descent-based algorithm (FTRL, EXP3, MWU). I will frequently use competitors set in this
post, and it refers to the domain on which we take the maximization. For instance in external regret,
the competitors’ set is the fixed actions Alg could have taken. In fact, the algorithm competes with
the alternatives of this set to have low regret. External regret is weak enough for having sublinear
regret even if uts are taken by a non-oblivious adversary (the choice of ut is based on the history up
to t). See (Lattimore and Szepesvári, 2020) for the algorithm.

Another thing is that ”Feedback is important, but for the algorithm!” You might have a full
information (knowing ut after t) or Bandit information (knowing only the entry of ut(at)) feedback
and it affects your regret bound, but in this post, we want to introduce different notions of regret,
which is not that relevant to the feedback.

1.1. Action Modifiers

One can imagine |A| = A many functions ϕ1, . . . , ϕ|A|, where each ϕi : A → A is an action
modifier, and ϕi maps all the actions in A to the single action of i ∈ A, i.e. ϕi(a) = i for all a ∈ A.
Put all these functions in a set E = {ϕ1, . . . , ϕA}. Now recall the set of competitors, E actually

© 2024 A. Masoumian.

MASOUMIAN

represents the set of competitors for the external regret. We can rewrite the external regret definition
as follows,

RegE(T) = max
ϕi∈E

T∑
t=1

ut(ϕi(at))−
∑
t

ut(at).

You might think ”why making that complicated!?”, but we need this to generalize external regret to
some stronger notions.

Figure 1: Action modifiers for external regret

2. Internal Regret

Consider another set of action modifiers I = {ϕij : i, j ∈ A} such that{
ϕij(i) = j

ϕij(k) = k ∀k ̸= i.

In other words, I contains A2−A+1 functions like ϕij : A → A that maps i to j and it is identical
anywhere else. Using I as the set of competitors we obtain the internal regret,

RegI(T) = max
ϕi∈I

T∑
t=1

ut(ϕi(at))−
∑
t

ut(at).

Note that E ̸⊂ I, which means for a fixed trajectory of actions, a1:T , and utilities, u1:T , RegI is not
necessarily greater than RegE . However, a no-internal regret algorithm is necessarily no-external
regret too. We see why this is the case by introducing swap regret.

3. Swap Regret

By setting the competitors set to be the set of all functions from A to itself, i.e. S = AA, we have
swap regret,

RegS(T) = max
ϕi∈S

T∑
t=1

ut(ϕi(at))−
∑
t

ut(at).

Obviously E ⊂ S and I ⊂ S, meaning swap regret is a stronger notion than both external and
internal. But there is an interesting connection between internal and swap regret.

2

ON REGRETS

Figure 2: Action modifiers for internal regret

Statement 3.1 Every no-internal regret algorithm is also a no-swap regret algorithm (and thus
no-external regret).

This result shows that the internal action modifiers in I are sufficient representatives for all action
modifiers, in the sense that if Alg can compete with I, then it also enjoys a sub-linear regret in the
competition with S. Also, note that the size of I is exponentially smaller than |S| = AA in A.
Now you might be looking forward to seeing a no-internal regret algorithm! Another surprising
result shows that they are not that out of reach! According to Blum-Mansour reduction, we know

Statement 3.2 Every no-external regret algorithm can be efficiently converted to a no-internal re-
gret algorithm.

Blum and Mansour (2007) obtained a swap regret in O(
√

TA log(A)) for full-information feed
back. This well-taught lecture by Tim Roughgarden (link) for proof. After tasting the beauty of this
idea, you might think ”Is it possible to drop that linear dependency on A!?”. Another important
recent work (Dagan et al., 2024) shows that this can be done, at the cost of having exponential
dependence on the error ϵ.

When generally a set of actions modifiers denote by of Φ is considered, the induced regret is
called Φ regret(Greenwald and Jafari, 2003).

Figure 3: Action modifiers for swap regret

3

https://youtu.be/XQ32p6clz9k?si=AfvbeVcrHic0d_FA

MASOUMIAN

4. Dynamic Regret

In this section, we introduce dynamic regret which is stronger than all the previous notions presented
above,

RegD(T) =
T∑
t=1

max
a∈A

ut(a)−
∑
t

ut(at).

In dynamic regret, for each iteration t, we (dynamically!) take maximum over the actions. This
means the value of the dynamic regret can be incrementally computed, while this is not the case
for previous notions for which a high-level view over the whole T iteration is needed. Sub-linear
dynamic regret is achievable in stochastic settings but, adversarial choices of ut might guarantee
regret in Ω(T). The value of all previous notions of regret, even the swap regret, may be negative
for some trajectories of a1:T and u1:T (think why!). However, dynamic regret is always positive.

5. Adaptive Notions of Regret

So far we have not assumed that taking action at will affect its following utility functions. On the
other hand, when there is a planning effect for taking actions, the learner might take actions with low
immediate rewards, with the hope of getting better utilities in the future. Reinforcement learning
captures this point by bringing states and transition kernel into the picture. The effect of previous
actions is encoded in the current state st which is (usually) observable for the learner at time t. Then
the reward function with the inputs of st and at determines the utility at time t, i.e. ut = r(st, at).
The adaptivity is what the transition P makes between the states, P(St+1 = st+1|At = at, St =
st) = Pat(st, st+1). Now we can define our competitor in this setting (the horizon is denoted by H
instead of T in this part for some reason!),

V ∗
H(s1) = max

a∗1,...,a
∗
H

H∑
t=1

r(st, a
∗
t). (1)

V ∗
H(s1) is the maximum cumulative utility that one can achieve in this adaptive setting starting

from state s1. Note that in this horizon, you might have ups and downs, sweet and bitter days, high
and low immediate rewards, but the whole sequence of actions a∗1, . . . , a

∗
T , is designed to give you

the highest cumulative reward. Now the question is ”How can I get this well-tuned sequence of
actions?”. The fundamental theorem of RL states that,

Statement 5.1 (Fundamental theorem) In a Markov Decision Process (when the random variables
of the current reward and the next state only depend on the current state and action, and not further
in the past), the current state is all you need to know to take the optimal actions.

To say it a bit more fancy, there exists a memory-less deterministic optimal policy π∗ : S → A
such that V ∗

H(s1) =
∑H

t=1 r(st, π
∗(st)) := V π∗

H (s1). This means that the domain of maximization
in the equation 1, i.e. AH can be replaced with the set of policies SA, which does not grow in H .
Note that, defining proper states is crucial. On one hand, it should be rich enough to capture needed
information in history to make Markov rewards and transitions, and on the other hand, The bigger
the state space is the harder it is to the optimal policy. This is studied in a research thread called
model selection. Maybe I should have mentioned this earlier, but we do not have any discounting
in rewards and this does not make any trouble as we assume a finite horizon. Now we can move on
and use this competitor in different notions of regrets.

4

ON REGRETS

5.1. Episodic Regret

Episodic regret is a common notion in online reinforcement learning. Suppose there are K episodes,
each with the length of H iterations. The episodic regret is defined as

RegEp(T) =
K∑
k=1

[V π∗
H (s1)− V πk

H (s1)],

where πk is the fixed policy employed by the algorithm in episode k ∈ [K]. This can be a natural
evaluation when there is an episodic structure in the environment. This notion still does not fully
capture the adaptivity point as it is like adding the sub-optimality of policies used in each episode.
At the level of episodes, it is still like external regret (even π∗ is optimal for all of the episodes which
is not necessarily the case for external regret.) The whole number of iterations in this interaction is
T = HK. The other point is that the algorithm can not change the policy within an episode. Check
out (Zhang et al., 2024) which achieves the optimal episodic regret in Õ(

√
SAH3K) without any

burn-in iterations.

5.2. Adaptive Dynamic Regret

Suppose an episodic regret with a planning horizon of H = 1 (i.e., K = T), where the initial state
of the episode k > 1 is the state that the transition kernel suggests based on the last state and action
in the previous one, i.e. sk−1 and ak−1. In this case, you can change the policy at every iteration.
Furthermore, V π∗

1 (sk) coincides with the highest immediate reward. This gives us the notion of
adaptive dynamic regret (I guess this is not a common name in literature though!),

RegAD(T) = E
[T∑
k=1

V π∗
1 (Sk)− V πk

1 (Sk)
]

(2)

= E
[T∑
t=1

max
a∗

r(a∗, St)− r(At, St)
]

(3)

We emphasize adaptive dynamic regret since the current action at not only determines the current
reward, but also affects the future utility functions through the transition kernel.

5.3. Average Reward Regret

Note that the competitor in adaptive dynamic regret is not equal to the optimal value, exactly because
of the the planning effect of the actions,

E
[T∑
t=1

max
a∗∈A

r(a∗, St)
]
≤ max

a∗1:T∈AT
E
[T∑
t=1

r(a∗t , St)
]
= V ∗

T (s1).

So if we use V ∗
T (s1) as the competitor, we will have,

RegV (T) = V ∗
T (s1)− E

[T∑
t=1

r(At, St)
]
,

5

MASOUMIAN

which is stronger than adaptive dynamic regret due to the above inequality. In case of having no
planning effect for the actions, like when the states suggested by transition kernel are independent
of the actions (contextual bandit), RegV coincides with RegAD. The regret RegV can be interpreted
as an episodic regret for a single episode plus the ability to change the policy in each interaction.
But RegV is not actually the average reward regret. There is a quantity called gain in the average
reward reinforcement learning, which is the asymptotic average reward that a policy gains, i.e.
gπ(s1) := limT→∞

1
T V

π
T (s1). The optimal policy then is defined as g∗(s1) := maxπ g

π(s1). In
weakly communicating MDPs (Puterman, 2014), the impact of the initial state fades away in optimal
policy (not for all policies), so g∗(s1) all have the same value for different s1. So we can use a scalar
g∗ instead. The Average reward regret is defined as,

RegAR(T) := Tg∗ − E
[T∑
t=1

r(At, St)
]
.

The gap between RegAR and RegV , i.e. |Tg∗ − V ∗
T (s1)|, is actually upper bounded by a constant

(for curious readers the constant is 2sp(h∗) where h∗ is the optimal bias). Thus these two notions
of regret are very close to each other. From a This is the notion that is used in the celebration
work by Auer et al. (2008), which introduces UCRL2 algorithm and the doubling trick to make
some inner epochs for this case that we do not have explicit episodes. Recently, another nice paper
has proposed an efficient optimal algorithm guaranteeing an average reward regret in the order of
Õ(

√
sph(h∗)SAT) (Boone and Zhang, 2024). The ticket in their work is modified Extended Value

Iteration (EVI) by cascading a projection to the Bellman operator. Another observation is that the
values of RegV , RegAD and RegEp are always non-negative, while RegAR might be negative (but
not that much!, Reg(AR) ≥ −2sp(h∗)).

5.4. Policy Regret

In the previous parts, the effect of current action on the future utilities was put on the shoulders of the
states and transition kernel. But this is not the only way of modeling adaptivity. One can directly
assume that the utility function maps the joint previous and current actions to a real number, i.e.
ut : At → R. This modification leads us to the policy regret,

RegP (T) = max
(a∗1,...,a

∗
T)∈CT

T∑
t=1

ut(a
∗
1:t)−

T∑
t=1

ut(A1:t),

where a1, . . . , at is abbreviated by a1:t. Also, It is assumed a competitor set CT which the counter-
factual sequences of actions belong to. Even for a simple CT , having no-policy regret algorithms is
not possible (Arora R, 2012), i.e.

Statement 5.2 For any Algorithm, and for CT being the set of constant sequences of form (a, . . . , a)
for all a ∈ A, there exists a sequence of utilities u1:T such that RegP ∈ Ω(T).

However, the policy regret would not be that hopeless if we added some limitations on utility func-
tions. Assume that there is a limited memory for the utility functions, i.e. only the last m actions
determine the current utility. In other words, ut : Am → R. In this case, achieving sub-linear regret
is feasible, usually with an exponent larger than 1

2 for T (See (Arora R, 2012)).

6

ON REGRETS

6. Game Theoretic Concerns

There are very nice connections between these notions of regret, and different notions of equilib-
ria. Just in brief, suppose the underlying procedure is a repeated game, meaning the actions are
pure strategies of a stage game, and the utilities for the learner come from joint actions chosen by
all players. In this case, averaging over the actions that a no-external regret algorithm takes over
time, converges to the course correlated, and the if you do the same for a no-swap regret algorithm
it converges to correlated equilibrium. Adding some constraints also leads us to the well-known
Nash equilibrium(Roughgarden, 2016). But one might point out that the agents are usually utility
maximize and not regret minimizer! These two might be really different depending on the notion of
regret (Brown et al., 2024). In adaptive notions of regret, the average reward regret is the most fitted
regret notion for utility maximization as it compares the performance of the algorithm to the best
utility-collecting procedure, even with considering the planning effect of the actions. This plan-
ning is common in repeated games especially if we want to capture that the other players (also)
take actions in response to the actions that the learner takes. Finally, based on policy regret, policy
equilibrium is also developed (Arora et al., 2018).

There are many interesting problems to work on in this area, such as ”How is having some
information about the opponents’ algorithm exploitable for the learner?” or ”How can we have
game-dependent regret bounds?” and many others.

7

MASOUMIAN

REFERENCES

Arora, R., Dinitz, M., Marinov, T. V., and Mohri, M. (2018). Policy regret in repeated games.
Advances in Neural Information Processing Systems, 31.

Arora R, Dekel O, T. A. (2012). Online bandit learning against an adaptive adversary: from regret
to policy regret. arXiv preprint arXiv:1206.6400.

Auer, P., Jaksch, T., and Ortner, R. (2008). Near-optimal regret bounds for reinforcement learning.
Advances in neural information processing systems, 21.

Blum, A. and Mansour, Y. (2007). From external to internal regret. Journal of Machine Learning
Research, 8(6).

Boone, V. and Zhang, Z. (2024). Achieving tractable minimax optimal regret in average reward
mdps. arXiv preprint arXiv:2406.01234.

Brown, W., Schneider, J., and Vodrahalli, K. (2024). Is learning in games good for the learners?
Advances in Neural Information Processing Systems, 36.

Dagan, Y., Daskalakis, C., Fishelson, M., and Golowich, N. (2024). From external to swap regret
2.0: An efficient reduction for large action spaces. In Proceedings of the 56th Annual ACM
Symposium on Theory of Computing, pages 1216–1222.

Greenwald, A. and Jafari, A. (2003). A general class of no-regret learning algorithms and game-
theoretic equilibria. In Learning Theory and Kernel Machines: 16th Annual Conference on
Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August
24-27, 2003. Proceedings, pages 2–12. Springer.

Lattimore, T. and Szepesvári, C. (2020). Bandit algorithms. Cambridge University Press.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons.

Roughgarden, T. (2016). Twenty lectures on algorithmic game theory. Cambridge University Press.

Zhang, Z., Chen, Y., Lee, J. D., and Du, S. S. (2024). Settling the sample complexity of online
reinforcement learning. In The Thirty Seventh Annual Conference on Learning Theory, pages
5213–5219. PMLR.

8

	External Regret
	Action Modifiers

	Internal Regret
	Swap Regret
	Dynamic Regret
	Adaptive Notions of Regret
	Episodic Regret
	Adaptive Dynamic Regret
	Average Reward Regret
	Policy Regret

	Game Theoretic Concerns

